Search results for "Differential topology"
showing 10 items of 20 documents
Surfaces of minimal degree of tame representation type and mutations of Cohen–Macaulay modules
2017
We provide two examples of smooth projective surfaces of tame CM type, by showing that any parameter space of isomorphism classes of indecomposable ACM bundles with fixed rank and determinant on a rational quartic scroll in projective 5-space is either a single point or a projective line. For surfaces of minimal degree and wild CM type, we classify rigid Ulrich bundles as Fibonacci extensions. For the rational normal scrolls S(2,3) and S(3,3), a complete classification of rigid ACM bundles is given in terms of the action of the braid group in three strands.
Der Satz von Tits für PGL2(R), R ein kommutativer Ring vom stabilen Rang 2
1996
Certain permutation groups on sets with distance relation are characterized as groups of projectivities PGL2(R) on the projective line over a commutative ring R of stable rank 2, thus generalizing a classical result of Tits where R is a field.
Generic properties of singular trajectories
1997
Abstract Let M be a σ-compact C∞ manifold of dimension d ≥ 3. Consider on M a single-input control system : x (t) = F 0 (x(t)) + u(t) F 1 (x(t)) , where F0, F1 are C∞ vector fields on M and the set of admissible controls U is the set of bounded measurable mappings u : [0Tu]↦ R , Tu > 0. A singular trajectory is an output corresponding to a control such that the differential of the input-output mapping is not of maximal rank. In this article we show that for an open dense subset of the set of pairs of vector fields (F0, F1), endowed with the C∞-Whitney topology, all the singular trajectories are with minimal order and the corank of the singularity is one.
Theta-characteristics on singular curves
2007
On a smooth curve a theta–characteristic is a line bundle L with square that is the canonical line bundle ω. The equivalent conditionHom(L, ω) ∼= L generalizes well to singular curves, as applications show. More precisely, a theta–characteristic is a torsion–free sheaf F of rank 1 with Hom(F , ω) ∼= F . If the curve has non ADE–singularities then there are infinitely many theta–characteristics. Therefore, theta–characteristics are distinguished by their local type. The main purpose of this article is to compute the number of even and odd theta–characteristics (i.e. F with h(C,F) ≡ 0 resp. h(C,F) ≡ 1 modulo 2) in terms of the geometric genus of the curve and certain discrete invariants of a …
Rank formulae for factorized groups
1991
The following inequalities for the torsion-free rank r0(G) of the group G=AB and for the p∞-rank rp(G) of the soluble-by-finite group G=AB are stated: $$\begin{gathered} r_0 (G) \leqslant r_0 (A) + r_0 (B) - r_0 (A \cap B), \hfill \\ r_p (G) \leqslant r_p (A) + r_p (B) - r_p (A \cap B). \hfill \\ \end{gathered} $$
Rank two aCM bundles on the del Pezzo fourfold of degree 6 and its general hyperplane section
2018
International audience; In the present paper we completely classify locally free sheaves of rank 2 with vanishing intermediate cohomology modules on the image of the Segre embedding $\mathbb{P}^2$ x $\mathbb{P}^2 \subseteq \mathbb{P}^8$ and its general hyperplane sections.Such a classification extends similar already known results regarding del Pezzo varieties with Picard numbers 1 and 3 and dimension at least 3.
Moduli spaces of rank two aCM bundles on the Segre product of three projective lines
2016
Let P^n be the projective space of dimension n on an algebraically closed field of characteristic 0 and F be the image of the Segre embedding of P^1xP^1xP^1 inside P^7. In the present paper we deal with the moduli spaces of locally free sheaves E on F of rank 2 with h^i(F,E(t))=0 for i=1,2 and each integer t.
Semimodular Locally Projective Lattices of Rank 4 from v.Staudt’s Point of View
1981
We consider groups of projectivities in a certain kind of lattices called “Spaces”,also comprising the circle planes, and give theorems of v.Staudtian type, which characterize those Spaces which can be represented by a sublattice of a projective geometry of rank 4.
The constant osculating rank of the Wilking manifold
2008
We prove that the osculating rank of the Wilking manifold V3 = (SO (3) × SU (3)) / U• (2), endowed with the metric over(g, )1, equals 2. The knowledge of the osculating rank allows us to solve the differential equation of the Jacobi vector fields. These results can be applied to determine the area and the volume of geodesic spheres and balls. To cite this article: E. Macias-Virgos et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2007 Academie des sciences.
Soluble groups with their centralizer factor groups of bounded rank
2007
Abstract For a group class X , a group G is said to be a C X -group if the factor group G / C G ( g G ) ∈ X for all g ∈ G , where C G ( g G ) is the centralizer in G of the normal closure of g in G . For the class F f of groups of finite order less than or equal to f , a classical result of B.H. Neumann [Groups with finite classes of conjugate elements, Proc. London Math. Soc. 1 (1951) 178–187] states that if G ∈ C F f , the commutator group G ′ belongs to F f ′ for some f ′ depending only on f . We prove that a similar result holds for the class S r ( d ) , the class of soluble groups of derived length at most d which have Prufer rank at most r . Namely, if G ∈ C S r ( d ) , then G ′ ∈ S d…